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1 Duality Theory

1.1 Motivation Examples
Example 1.1. Let us consider the following optimization problem:

min f(x),

st.ci(x)=0,i=1,...,m.

If c;(x) = a;' x — b;, we have the optimality condition for constrains Ax = b. If ¢; is not a linear function, the
optimality condition is (Vf(x*),y —x*) > 0, forally € X = {x|c;(x) =0,i = 1,...,m}. This means we

have no an equation system to solve the optimal point compared with the equality constrains.

Example 1.2. LAD regression: miny || Ax — b||1.

* Sub-gradient descent: x't! = x' — 5,9 (Ax' — b). The speed is O(%)
¢ Proximal Gradient Descent: consider miny f(x) + ||Ax — b||1, where f(x) = 0. Then the corresponding

PGD algorithm is

xtt+

b= proxy | ax—p, (<),
proXy| ax—p|, (x') = argmin{ g [|x — x| + || Ax — b1 }.

Example 1.3. Fused LASSO [?]:

1
min > || Ax = b|* + A|[Fx]1, (1)
where F € R(7=1)x1 and
1,j=i+1,
Fi=4-1,j=i

0, otherwise.



1.2 The Lagrange Dual Function

We consider that

min fo(x),

st fi(x)<0,i=1,...,m,
h](X) = O,]'* 1,...,1.

Definition 1.4. We define that Lagrangian L : R" x R" x R — R is

m l

L(X, )\, V) = fo(X) + Z )\ifi(x) + Z V]'l”lj(x),
i=1 =1

where A = (A,...,Ay) " and v = (vy,...,1;)" are denoted as dual variables or Lagrange multipliers.

Definition 1.5. Define the Lagrange dual function as

g(Av)=inf L(x, A\, v),

xeD
where D = {N" ;dom(f;)} N {ﬂ}zldom(hj)}.

Theorem 1.6. Let us define that p* = minye y fo(x), then

gAv) <p’
forany X > 0.

Proof. Suppose thatx € X, then Y/ ; A;fi(X) + 25-:1 vjhi(x) < 0. Thus,

g\ v)

= inf L(x,\,v) < L(X, A, v)
xeD

m !

= fox) + Z% Aifi(x) + X% vihj(x)
i= j=

< fO()_()/

for all x € X. Therefore, g(A,v) < fo(x*) = p*

[
Remark 1.7.  Theorem 1.6 shows the Lagrange dual function gives a nontrivial lower bound on p* only when

A > 0and (X, v) € dom(g). We refer to a pair (A, v) € dom(g) with X > 0 as dual feasible variables.

e ¢(\ v) is always concave.

Definition 1.8. For each pair (A, v) € dom(g) with A > 0, the Lagrange dual function gives us a lower

bound of p*. A natural question is what is the best lower bound that can be obtained form the Lagrange

@)

®)



dual function. This leads to the following optimization problem:
g* =maxg(A,v), 4)
AV
s.t A= 0. ®)
The previous problem is called Lagrange dual problem and (A*,v*) are the dual optimal variables or optimal
Lagrange multipliers.
The Lagrange dual problem is a convex optimization since the objective to be maximized is concave and the
constraint is convex, whether or not the primal problem is convex.
Definition 1.9. Weak Duality: 4* < p*.
Strong Duality: ¢* = p*.
Remark 1.10. o Weak duality always holds. However, strong duality needs more well conditions.
o Let us discuss the following fact first:

fo(x), filx)<0,i=1,...,m

oo, otherwise.

sup{fo(x) + ) Aifi(x)} =
A0 :

Thus, we have

p* =infsup L(x, A),
X X=0

q* =supinfL(x, \).
A=0 X

Therefore, the weak duality implies that

supinf L(x,A) < infsup L(x, A).
A-0 X X A0

Definition 1.11. We refer to a pair (X, ¥) as a saddle-point for f if

fxy) < f(xy) < f(x9),

for all (x,y) € dom(f). In other words, X minimizes f(x,y) and y minimizes f (X, y). Saddle-point problems

play an important role in Game Theory and Generative Adversarial Networks.

Example 1.12.

min Htz,

s.t. Ax = b.

e Lagrangian: L(x,v) = ||x||> + v (Ax—b).



e Lagrange Dual Function: ¢(v) = infy L(x, ). We know that VyL(x,v) = 2x + ATv = 0, thus

x* = —1ATv. Take x* into Lagrangian, we obtain the Lagrange dual function

gv) = —%VTAATV —v'b
¢ Dual problem: max *%VTAATV —v'b.

e Weak duality:
1
sup{—ZuTAATV — l/Tb} < m;(in{||x||2|Ax =b}.
174

Example 1.13. (Linear Programming) Recall the example of transportation problem in OM.
min ch,
X
s.t. Ax =D,

x >~ 0.
¢ Lagrangian:
Lx,Av)=c x—ATx+v (Ax=b)=(c—A+A"v) x—v'b.

¢ Lagrange Dual Function:

—v'b,c—A+ATv=0,
g\ v) =

—o0, otherwise.

® Dual problem:
max — VTb,
AV

st.c—A+ATv=0,

A>0.
This is equivalent to
min I/Tb,
174
st.c+Alv = 0.
Example 1.14.
min ||x||,
X
s.t. Ax =b.

It seems that we cannot obtain the Lagrange dual function via the directly derivation. How to do? We will

learn and adapt conjugate function to handle this problem.
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