Optimization Theory and Algorithm

Lecture 2 - 09/17/2021

Lecture 2

Lecturer: Xiangyu Chang

Scribe: Xiangyu Chang

Edited by: Junbo Hao

1 Duality Theory

1.1 Motivation Examples

Example 1.1. Let us consider the following optimization problem:

$$\min_{\mathbf{x}} f(\mathbf{x}),$$

s.t. $c_i(\mathbf{x}) = 0, i = 1, \dots, m.$

If $c_i(\mathbf{x}) = \mathbf{a}_i^\top \mathbf{x} - b_i$, we have the optimality condition for constrains $A\mathbf{x} = \mathbf{b}$. If c_i is not a linear function, the optimality condition is $\langle \nabla f(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \ge 0$, for all $\mathbf{y} \in \mathcal{X} = \{\mathbf{x} | c_i(\mathbf{x}) = 0, i = 1, ..., m\}$. This means we have no an equation system to solve the optimal point compared with the equality constrains.

Example 1.2. LAD regression: $\min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||_1$.

- Sub-gradient descent: $\mathbf{x}^{t+1} = \mathbf{x}^t s_t \partial_{\|\cdot\|_1} (A\mathbf{x}^t b)$. The speed is $O(\frac{1}{\sqrt{T}})$.
- Proximal Gradient Descent: consider $\min_{\mathbf{x}} f(\mathbf{x}) + ||A\mathbf{x} \mathbf{b}||_1$, where $f(\mathbf{x}) = 0$. Then the corresponding PGD algorithm is

$$\begin{cases} \mathbf{x}^{t+1} = prox_{\alpha \parallel A\mathbf{x} - \mathbf{b} \parallel_1}(\mathbf{x}^t), \\ prox_{\alpha \parallel A\mathbf{x} - \mathbf{b} \parallel_1}(\mathbf{x}^t) = \arg\min\{\frac{1}{2\alpha} \|\mathbf{x} - \mathbf{x}^t\|^2 + \|A\mathbf{x} - \mathbf{b}\|_1\} \end{cases}$$

Example 1.3. Fused LASSO [?]:

$$\min_{\mathbf{x}} \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2 + \lambda \|F\mathbf{x}\|_1, \tag{1}$$

where $F \in \mathbb{R}^{(n-1) \times n}$ and

$$F_{ij} = \begin{cases} 1, \ j = i + 1, \\ -1, \ j = i, \\ 0, \ otherwise. \end{cases}$$

1.2 The Lagrange Dual Function

We consider that

$$\min_{\mathbf{x}} f_0(\mathbf{x}),$$

s.t. $f_i(\mathbf{x}) \leq 0, i = 1, \dots, m,$
 $h_j(\mathbf{x}) = 0, j = 1, \dots, l.$

Definition 1.4. We define that *Lagrangian* $L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^l \to \mathbb{R}$ is

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{j=1}^l \nu_j h_j(\mathbf{x}),$$
(2)

where $\lambda = (\lambda_1, \dots, \lambda_m)^{\top}$ and $\nu = (\nu_1, \dots, \nu_l)^{\top}$ are denoted as *dual variables or Lagrange multipliers*.

Definition 1.5. Define the Lagrange dual function as

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in D} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}), \tag{3}$$

where $D = \{ \cap_{i=0}^{m} \operatorname{dom}(f_i) \} \cap \{ \cap_{j=1}^{l} \operatorname{dom}(h_j) \}.$

Theorem 1.6. Let us define that $p^* = \min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$, then

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leqslant p^*$$

for any $\boldsymbol{\lambda} \succeq 0$ *.*

Proof. Suppose that $\bar{\mathbf{x}} \in \mathcal{X}$, then $\sum_{i=1}^{m} \lambda_i f_i(\bar{\mathbf{x}}) + \sum_{j=1}^{l} \nu_j h_j(\bar{\mathbf{x}}) \leq 0$. Thus,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in D} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq L(\bar{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
$$= f_0(\bar{\mathbf{x}}) + \sum_{i=1}^m \lambda_i f_i(\bar{\mathbf{x}}) + \sum_{j=1}^l \nu_j h_j(\bar{\mathbf{x}})$$
$$\leq f_0(\bar{\mathbf{x}}),$$

for all $\bar{\mathbf{x}} \in \mathcal{X}$. Therefore, $g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_0(\mathbf{x}^*) = p^*$.

Remark 1.7. • Theorem 1.6 shows the Lagrange dual function gives a nontrivial lower bound on p^* only when $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom}(g)$. We refer to a pair $(\lambda, \nu) \in \text{dom}(g)$ with $\lambda \succeq 0$ as dual feasible variables.

• $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is always concave.

Definition 1.8. For each pair $(\lambda, \nu) \in \text{dom}(g)$ with $\lambda \succeq 0$, the Lagrange dual function gives us a lower bound of p^* . A natural question is what is the best lower bound that can be obtained form the Lagrange

dual function. This leads to the following optimization problem:

$$q^* = \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}} g(\boldsymbol{\lambda}, \boldsymbol{\nu}), \tag{4}$$

$$s.t. \lambda \succeq 0.$$
 (5)

The previous problem is called *Lagrange dual problem* and (λ^*, ν^*) are the *dual optimal variables or optimal Lagrange multipliers*.

The Lagrange dual problem is a convex optimization since the objective to be maximized is concave and the constraint is convex, whether or not the primal problem is convex.

Definition 1.9. Weak Duality: $q^* \leq p^*$.

Strong Duality: $q^* = p^*$.

Remark 1.10. • Weak duality always holds. However, strong duality needs more well conditions.

• Let us discuss the following fact first:

$$\sup_{\boldsymbol{\lambda} \succeq 0} \{ f_0(\mathbf{x}) + \sum_i \lambda_i f_i(\mathbf{x}) \} = \begin{cases} f_0(\mathbf{x}), & f_i(\mathbf{x}) \leq 0, i = 1, \dots, m \\ \infty, & otherwise. \end{cases}$$

Thus, we have

$$p^* = \inf_{\mathbf{x}} \sup_{\boldsymbol{\lambda} \succeq 0} L(\mathbf{x}, \boldsymbol{\lambda}),$$
$$q^* = \sup_{\boldsymbol{\lambda} \succeq 0} \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}).$$

Therefore, the weak duality implies that

$$\sup_{\boldsymbol{\lambda}\succeq 0} \inf_{\mathbf{x}} L(\mathbf{x},\boldsymbol{\lambda}) \leq \inf_{\mathbf{x}} \sup_{\boldsymbol{\lambda}\succeq 0} L(\mathbf{x},\boldsymbol{\lambda}).$$

Definition 1.11. We refer to a pair $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ as a *saddle-point* for *f* if

$$f(\bar{\mathbf{x}}, \mathbf{y}) \leqslant f(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \leqslant f(\mathbf{x}, \bar{\mathbf{y}}),$$

for all $(\mathbf{x}, \mathbf{y}) \in \text{dom}(f)$. In other words, $\bar{\mathbf{x}}$ minimizes $f(\mathbf{x}, \bar{\mathbf{y}})$ and $\bar{\mathbf{y}}$ minimizes $f(\bar{\mathbf{x}}, \mathbf{y})$. Saddle-point problems play an important role in **Game Theory and Generative Adversarial Networks**.

Example 1.12.

$$\min \|\mathbf{x}\|^2,$$

s.t. $A\mathbf{x} = \mathbf{b}$.

• Lagrangian: $L(\mathbf{x}, \boldsymbol{\nu}) = \|\mathbf{x}\|^2 + \boldsymbol{\nu}^\top (A\mathbf{x} - \mathbf{b}).$

• Lagrange Dual Function: $g(\boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu})$. We know that $\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + A^{\top} \boldsymbol{\nu} = 0$, thus $\mathbf{x}^* = -\frac{1}{2}A^{\top}\boldsymbol{\nu}$. Take \mathbf{x}^* into Lagrangian, we obtain the Lagrange dual function

$$g(\boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^{\top}AA^{\top}\boldsymbol{\nu} - \boldsymbol{\nu}^{\top}\mathbf{b}$$

- Dual problem: max $-\frac{1}{4}\boldsymbol{\nu}^{\top}AA^{\top}\boldsymbol{\nu} \boldsymbol{\nu}^{\top}\mathbf{b}$.
- Weak duality:

•

$$\sup_{\boldsymbol{\nu}} \{-\frac{1}{4}\boldsymbol{\nu}^{\top} A A^{\top} \boldsymbol{\nu} - \boldsymbol{\nu}^{\top} \mathbf{b}\} \leqslant \min_{\mathbf{x}} \{\|\mathbf{x}\|^2 | A \mathbf{x} = \mathbf{b}\}.$$

Example 1.13. (Linear Programming) Recall the example of transportation problem in OM.

$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x},$$

s.t. $A\mathbf{x} = \mathbf{b},$
 $\mathbf{x} \succeq \mathbf{0}.$

• Lagrangian:

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \mathbf{c}^{\top} \mathbf{x} - \boldsymbol{\lambda}^{\top} \mathbf{x} + \boldsymbol{\nu}^{\top} (A\mathbf{x} - \mathbf{b}) = (\mathbf{c} - \boldsymbol{\lambda} + A^{\top} \boldsymbol{\nu})^{\top} \mathbf{x} - \boldsymbol{\nu}^{\top} \mathbf{b}.$$

• Lagrange Dual Function:

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\boldsymbol{\nu}^{\top} \mathbf{b}, \ \mathbf{c} - \boldsymbol{\lambda} + A^{\top} \boldsymbol{\nu} = 0, \\ -\infty, \ otherwise. \end{cases}$$

• Dual problem:

$$\max_{\boldsymbol{\lambda}, \boldsymbol{\nu}} - \boldsymbol{\nu}^{\top} \mathbf{b},$$
s.t. $\mathbf{c} - \boldsymbol{\lambda} + A^{\top} \boldsymbol{\nu} = 0,$
 $\boldsymbol{\lambda} \succeq 0.$

This is equivalent to

$$\min_{\boldsymbol{\nu}} \boldsymbol{\nu}^{\top} \mathbf{b},$$

s.t. $\mathbf{c} + A^{\top} \boldsymbol{\nu} \succeq 0.$

Example 1.14.

 $\min_{\mathbf{x}} \|\mathbf{x}\|,$
s.t. $A\mathbf{x} = \mathbf{b}$.

It seems that we cannot obtain the Lagrange dual function via the directly derivation. How to do? We will learn and adapt conjugate function to handle this problem.