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1 Duality Theory

1.1 Motivation Examples

Example 1.1. Let us consider the following optimization problem:

min
x

f (x),

s.t. ci(x) = 0, i = 1, . . . , m.

If ci(x) = a>i x− bi, we have the optimality condition for constrains Ax = b. If ci is not a linear function, the

optimality condition is 〈∇ f (x∗), y− x∗〉 > 0, for all y ∈ X = {x|ci(x) = 0, i = 1, . . . , m}. This means we

have no an equation system to solve the optimal point compared with the equality constrains.

Example 1.2. LAD regression: minx ‖Ax− b‖1.

• Sub-gradient descent: xt+1 = xt − st∂‖·‖1
(Axt − b). The speed is O( 1√

T
).

• Proximal Gradient Descent: consider minx f (x) + ‖Ax− b‖1, where f (x) = 0. Then the corresponding

PGD algorithm is xt+1 = proxα‖Ax−b‖1
(xt),

proxα‖Ax−b‖1
(xt) = arg min{ 1

2α‖x− xt‖2 + ‖Ax− b‖1}.

Example 1.3. Fused LASSO [?]:

min
x

1
2
‖Ax− b‖2 + λ‖Fx‖1, (1)

where F ∈ R(n−1)×n and

Fij =


1, j = i + 1,

−1, j = i,

0, otherwise.
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1.2 The Lagrange Dual Function

We consider that

min
x

f0(x),

s.t. fi(x) 6 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , l.

Definition 1.4. We define that Lagrangian L : Rn ×Rm ×Rl → R is

L(x,λ,ν) := f0(x) +
m

∑
i=1

λi fi(x) +
l

∑
j=1

νjhj(x), (2)

where λ = (λ1, . . . , λm)> and ν = (ν1, . . . , νl)
> are denoted as dual variables or Lagrange multipliers.

Definition 1.5. Define the Lagrange dual function as

g(λ,ν) = inf
x∈D

L(x,λ,ν), (3)

where D = {∩m
i=0dom( fi)} ∩ {∩l

j=1dom(hj)}.

Theorem 1.6. Let us define that p∗ = minx∈X f0(x), then

g(λ,ν) 6 p∗

for any λ � 0.

Proof. Suppose that x̄ ∈ X , then ∑m
i=1 λi fi(x̄) + ∑l

j=1 νjhj(x̄) 6 0. Thus,

g(λ,ν) = inf
x∈D

L(x,λ,ν) 6 L(x̄,λ,ν)

= f0(x̄) +
m

∑
i=1

λi fi(x̄) +
l

∑
j=1

νjhj(x̄)

6 f0(x̄),

for all x̄ ∈ X . Therefore, g(λ,ν) 6 f0(x∗) = p∗. �

Remark 1.7. • Theorem 1.6 shows the Lagrange dual function gives a nontrivial lower bound on p∗ only when

λ � 0 and (λ,ν) ∈ dom(g). We refer to a pair (λ,ν) ∈ dom(g) with λ � 0 as dual feasible variables.

• g(λ,ν) is always concave.

Definition 1.8. For each pair (λ,ν) ∈ dom(g) with λ � 0, the Lagrange dual function gives us a lower

bound of p∗. A natural question is what is the best lower bound that can be obtained form the Lagrange
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dual function. This leads to the following optimization problem:

q∗ =max
λ,ν

g(λ,ν), (4)

s.t. λ � 0. (5)

The previous problem is called Lagrange dual problem and (λ∗,ν∗) are the dual optimal variables or optimal

Lagrange multipliers.

The Lagrange dual problem is a convex optimization since the objective to be maximized is concave and the

constraint is convex, whether or not the primal problem is convex.

Definition 1.9. Weak Duality: q∗ 6 p∗.

Strong Duality: q∗ = p∗.

Remark 1.10. • Weak duality always holds. However, strong duality needs more well conditions.

• Let us discuss the following fact first:

sup
λ�0
{ f0(x) + ∑

i
λi fi(x)} =

 f0(x), fi(x) 6 0, i = 1, . . . , m

∞, otherwise.

Thus, we have

p∗ = inf
x

sup
λ�0

L(x,λ),

q∗ = sup
λ�0

inf
x

L(x,λ).

Therefore, the weak duality implies that

sup
λ�0

inf
x

L(x,λ) 6 inf
x

sup
λ�0

L(x,λ).

Definition 1.11. We refer to a pair (x̄, ȳ) as a saddle-point for f if

f (x̄, y) 6 f (x̄, ȳ) 6 f (x, ȳ),

for all (x, y) ∈ dom( f ). In other words, x̄ minimizes f (x, ȳ) and ȳ minimizes f (x̄, y). Saddle-point problems

play an important role in Game Theory and Generative Adversarial Networks.

Example 1.12.

min ‖x‖2,

s.t. Ax = b.

• Lagrangian: L(x,ν) = ‖x‖2 + ν>(Ax− b).
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• Lagrange Dual Function: g(ν) = infx L(x,ν). We know that ∇xL(x,ν) = 2x + A>ν = 0, thus

x∗ = − 1
2 A>ν. Take x∗ into Lagrangian, we obtain the Lagrange dual function

g(ν) = −1
4
ν>AA>ν − ν>b

.

• Dual problem: max− 1
4ν
>AA>ν − ν>b.

• Weak duality:

sup
ν
{−1

4
ν>AA>ν − ν>b} 6 min

x
{‖x‖2|Ax = b}.

Example 1.13. (Linear Programming) Recall the example of transportation problem in OM.

min
x

c>x,

s.t. Ax = b,

x � 0.

• Lagrangian:

L(x,λ,ν) = c>x− λ>x + ν>(Ax− b) = (c− λ+ A>ν)>x− ν>b.

• Lagrange Dual Function:

g(λ,ν) =

 −ν>b, c− λ+ A>ν = 0,

−∞, otherwise.

• Dual problem:

max
λ,ν
− ν>b,

s.t. c− λ+ A>ν = 0,

λ � 0.

This is equivalent to

min
ν

ν>b,

s.t. c + A>ν � 0.

Example 1.14.

min
x
‖x‖,

s.t. Ax = b.

It seems that we cannot obtain the Lagrange dual function via the directly derivation. How to do? We will

learn and adapt conjugate function to handle this problem.
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